Clay Codes: Moulding MDS Codes to Yield an MSR Code

نویسندگان

  • Myna Vajha
  • Vinayak Ramkumar
  • Bhagyashree Puranik
  • Ganesh R. Kini
  • Elita Lobo
  • Birenjith Sasidharan
  • P. Vijay Kumar
  • Alexandar Barg
  • Min Ye
  • Srinivasan Narayanamurthy
  • Syed Hussain
  • Siddhartha Nandi
چکیده

With increase in scale, the number of node failures in a data center increases sharply. To ensure availability of data, failure-tolerance schemes such as ReedSolomon (RS) or more generally, Maximum Distance Separable (MDS) erasure codes are used. However, while MDS codes offer minimum storage overhead for a given amount of failure tolerance, they do not meet other practical needs of today’s data centers. Although modern codes such as Minimum Storage Regenerating (MSR) codes are designed to meet these practical needs, they are available only in highly-constrained theoretical constructions, that are not sufficiently mature enough for practical implementation. We present Clay codes that extract the best from both worlds. Clay (short for CoupledLayer) codes are MSR codes that offer a simplified construction for decoding/repair by using pairwise coupling across multiple stacked layers of any single MDS code. In addition, Clay codes provide the first practical implementation of an MSR code that offers (a) low storage overhead, (b) simultaneous optimality in terms of three key parameters: repair bandwidth, sub-packetization level and disk I/O, (c) uniform repair performance of data and parity nodes and (d) support for both single and multiple-node repairs, while permitting faster and more efficient repair. While all MSR codes are vector codes, none of the distributed storage systems support vector codes. We have modified Ceph to support any vector code, and our contribution is now a part of Ceph’s master codebase. We have implemented Clay codes, and integrated it as a plugin to Ceph. Six example Clay codes were evaluated on a cluster of Amazon EC2 instances and code parameters were carefully chosen to match known erasure-code deployments in practice. A particular example code, with storage overhead 1.25x, is shown to reduce repair network traffic by a factor of 2.9 in comparison with RS codes and similar reductions are obtained for both repair time and disk read.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

∊-MSR codes with small sub-packetization

Minimum storage regenerating (MSR) codes form a special class of maximum distance separable (MDS) codes by providing mechanisms for exact regeneration of a single code block in their codewords by downloading the minimum amount of information from the remaining code blocks. As a result, the MSR codes find application to distributed storage systems to enable node repairs with the optimal repair b...

متن کامل

HashTag Erasure Codes: From Theory to Practice

Minimum-Storage Regenerating (MSR) codes have emerged as a viable alternative to Reed-Solomon (RS) codes as they minimize the repair bandwidth while they are still optimal in terms of reliability and storage overhead. Although several MSR constructions exist, so far they have not been practically implemented mainly due to the big number of I/O operations. In this paper, we analyze high-rate MDS...

متن کامل

A New Piggybacking Design for Systematic MDS Storage Codes

Distributed storage codes have important applications in the design of modern storage systems. In a distributed storage system, every storage node has a probability to fail and once an individual storage node fails, it must be reconstructed using data stored in the surviving nodes. Computation load and network bandwidth are two important issues we need to concern when repairing a failed node. T...

متن کامل

Enabling All-Node-Repair in Minimum Storage Regenerating Codes

We consider the problem of constructing exact-repair minimum storage regenerating (MSR) codes, for which both the systematic nodes and parity nodes can be repaired optimally. Although there exist several recent explicit high-rate MSR code constructions (usually with certain restrictions on the coding parameters), quite a few constructions in the literature only allow the optimal repair of syste...

متن کامل

A Non-MDS Erasure Code Scheme for Storage Applications

This paper investigates the use of redundancy and self repairing against node failures indistributed storage systems using a novel non-MDS erasure code. In replication method, accessto one replication node is adequate to reconstruct a lost node, while in MDS erasure codedsystems which are optimal in terms of redundancy-reliability tradeoff, a single node failure isrepaired after recovering the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018